If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-128x+100=0
a = 4; b = -128; c = +100;
Δ = b2-4ac
Δ = -1282-4·4·100
Δ = 14784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14784}=\sqrt{64*231}=\sqrt{64}*\sqrt{231}=8\sqrt{231}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-8\sqrt{231}}{2*4}=\frac{128-8\sqrt{231}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+8\sqrt{231}}{2*4}=\frac{128+8\sqrt{231}}{8} $
| 2x6-4X-51=0 | | -4(1-4m)=-84 | | 6+x/5=3 | | -3x+10+5x=24 | | (x-4)+3=1 | | 1/6y+4=-19 | | 16m-12=24+14m | | 2-3y=5+8y | | −10x+5=-6x-35 | | 7x/24-7=x/6+8 | | 8x-6=7x=1 | | 5−4r=-4r+5 | | -(2x+8)=(3x+7) | | 1/3x-4=1/2x+7 | | -4-20p+6p=-14p-4 | | 140+60x=1570 | | 6x-(3x+13)=8 | | 3x/5+2=12/5 | | -4−20p+6p=-14p−4 | | -9u+9+11u=2u+9 | | n–11=24–9n | | -7+17q=2q+8 | | 8+6g-12=-10g+40-2g | | 14=x+-4 | | -2-17v=-17v-13+17 | | 4x=6=-34-6x | | 8x-7=53-2 | | -2−17v=-17v−13+17 | | x/10-2=19/20 | | 2x^2-4x=51 | | -5x+42=72 | | 7u-2u=25 |